Pinterest Data Scientist 面试指南:Product Sense & SQL 是核心
Pinterest Data Scientist Interview Guide: Product Sense & SQL Focus
Pinterest Data Scientist Interview Guide: Product Sense & SQL Focus
[!NOTE] Pinterest 的 Data Science 面试以 "Product-Driven" 著称。与 Google/Meta 不同,Pinterest 更看重你对 "User Discovery" 和 "Recommendation" 的业务理解。
本文基于 2026 最新 Data Scientist 面试真题,深度拆解 Pinterest 的考察重点。
Module 1: Product Sense (The Core)
Pinterest 的核心是 "Discovery Engine"。面试中,你需要像 Product Manager 一样思考。
- Understanding the Product:
- Pinterest 不是 Social Media (like Instagram),而是 Visual Search Engine。
- Metric 重点不是 "Time Spent",而是 "Successful Saves (Pins)" 和 "Click-through to Website"。
- Sample Question: "We want to launch a feature that allows users to shop directly from Pins. How would you measure success?"
- North Star Metric: Gross Merchandise Value (GMV) attributed to Pins.
- Guardrail Metric: User engagement (saves/clicks) on non-shoppable pins. (Don't hurt the core experience).
Module 2: SQL & Data Processing (Deep Dive)
Pinterest 的数据量极大 (Petabytes level)。SQL 考核非常硬核。
1. Schema Awareness
面试官通常会给你三个核心 Table:
* users: user_id, country, signup_date
* pins: pin_id, category, creator_id
* actions: user_id, pin_id, action_type ('save', 'click', 'impression'), timestamp
2. Complex Query Example (Window Functions)
Question: "Find the top 3 categories for each user based on their 'save' actions in the last 7 days."
WITH user_category_counts AS (
SELECT
a.user_id,
p.category,
COUNT(*) as save_count
FROM actions a
JOIN pins p ON a.pin_id = p.pin_id
WHERE a.action_type = 'save'
AND a.timestamp >= NOW() - INTERVAL '7 DAYS'
GROUP BY 1, 2
),
ranked_categories AS (
SELECT
user_id,
category,
DENSE_RANK() OVER(PARTITION BY user_id ORDER BY save_count DESC) as rnk
FROM user_category_counts
)
SELECT * FROM ranked_categories WHERE rnk <= 3;
Key Checkpoints:
- Did you filter by
action_type = 'save'? - Did you use
DENSE_RANKvsRANK? (Handle ties correctly). - Did you optimize the
JOIN? (Filter timestamp before join if possible).
Module 3: Experimentation (A/B Testing)
由于 Pinterest 的 Feature 往往互相影响 (Network Effect),A/B Testing 很难。
- Challenge: 如果你改变了 recommendation algorithm,Control Group 的用户也可能因为 Treatment Group 用户的行为改变而受到影响 (Spillover Effect)。
- Solution: 使用 Cluster Randomization (switchback testing) 或者 User-side Experimentation with careful isolation.
[!TIP] Expert Insight: 在回答 A/B Testing 问题时,不要只背诵 "Sample Size" 公式。要展现你对 "Interference" 和 "Novelty Effect" 的理解,这才是 Senior 和 Junior 的分水岭。
总结
准备 Pinterest 面试,请多刷 SQL (Road to 100 题),并深入阅读 Pinterest Engineering Blog。懂技术,更要懂 "Inspiration"。
